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INTRODUCTION 

The possible applications of a photodetector a re  subject t o  a 

One of these is  the detector s ens i t i v i ty  deter- number of factors,  

mined by the smallest input s ignal  necessary t o  produce a useful out- 

put signal, 

efficiency t o  radiation of a l l  wavelengths, For t h i s  reason it is 

As a rule, photodetectors do not respond with the same 

important t o  know the  extent t o  which a given detector varies with the. 

wavelength of the incident radiation, 

spectral  response of the detector, 

This. var ia t ion is  known a s  the  

Standard procedures f o r  studying the properties of photodetec- 

The following report t o r s  have been published (References 1 and 2), 

describes the instrumentation and procedures used t o  determine the 

re la t ive  spec t ra l  response of a detector t o  v i s ib l e  and near infrared 

radiation , 
_- 

THEORY 

Photon detectors a re  commonly defined i n  terms of a number of 

character is t ics  (Reference 3) 

the  noise equivalent power (NEP) , the noise equivalent input (NEI) , 
the detect ivi ty ,  1)3( (%star) ,  DW (D-double-star), the  quantum effi- 

ciency, and the responsivity. 

The most s ignif icant  of these are: 

Other fac tors  which must be considered 

i n  the  choice of a detector a re t  

operating frequency, and the  spectral  range over which it may be used. 

the  time constant, t he  effect of 
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This report deals with the  re la t ive  spec t ra l  response o f  a detec- 

"The responsivity of a detector is defined a s  the  output s igna l  t o r ,  

per uni t  input signal" (Reference 3) and thus has the dimensions of 

f b l t s  per w a t t 1 1 .  

t o  measure the output of a detector. On the other hand it is muchamore 

d i f f i c u l t  t o  determine the  energy input in to  the same detector since it 

is  necessary t o  have a standard source having an accurately known inten- 

s i ty  and angular distribution. 

t h e  dimensions and f i e l d  of v i e w  of t he  detector a re  known, it is  pos- 

sible t o  determine t h e  power incident on the detector and hence its 

Given an accurate voltmeter, it is  a simple problem 

Assuming t ha t  t h i s  is  known and tha t  

responsivity. 

tor should receive a known amount of energy i n  a very narrow spectral  

range, An al ternat ive would be t o  compare the spectral  response of a 

detector with t h a t  of a detector of known spectral  response when both 

receive the same energy in a narrow spec t ra l  range, 

In order t o  determine the spectral  response, the detec- 

I n  contrast ,  it is. a much simpler problem t o  determine the rela- 

Assuming that  one has a llblacktl t i v e  spectral  response o f  a detector, 

reference detector, t h a t  is, a detector having a response independent 

of wavelength, t h e  outputs of the reference detector and of the unknctwn 

detector f o r  the  same energy input in a very narrow spec t ra l  range may 

be determined. 

over the wavelength range of interest .  

unknown detector t o  t ha t  of the reference detector should be deter- 

These measurements should be made a t  frequent intervgtls 

The r a t i o  of the output of the 

mined fo r  each interval ,  and then normalized t o  uni ty  a t  the wavelength 

a t  which the  detector has i ts  maximum response. An al ternat ive would 
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be t o  use a reference detector which is  not ttblackll over the  whole 

wavelength range of interest ,  but has a known spec t ra l  response, and 

calculate the  corresponding r a t io s  f o r  a black detector, 

INSTRUMENTATION 

The opt ica l  system combines a Perkin-Elmer Double-Pass Monochro- 

mator, Model 99, with a beam s p l i t t e r  (dual beam chopper). 

beam chopper consis ts  of two two-sector chopper blades (see figure 1, 

The dual 

M8 and Mg) designed t o  be driven by a common synchronous motor opera- 

t i ng  a t  a speed which gives a 13 Ha output signal from each chopper 

blade. 

front-surfaced aluminum mirrors. 

Both sectors of each chopper blade a re  covered by matching 

The location and synchronigtion of 

the two blades a re  designed t o  divide the  beam received from the  re- 

imaging optics (figure 1, M6 and ?) in to  two beams of equal i n t ens i ty  

making 120' with each other and with the  incident beam, 

Radiation from a mercury-xenon arc  o r  from a globar i s  focussed 

on the  entrance slit of the double-pass monochromator (see figure 2). 
- 

After the  second pass through the  opt ica l  system of the  monochromator, 

the  radiation in a predetermined narrow spectral  band, dependent on 

the monochromator dnun set t ing and slit width, is focussed on the e x i t  

slit  of t he  monochromator, 

reimaging opt ics  (figure 1) and directed toward the  beam s p l i t t e r  (dual 

beam chopper), 

This emerging beam is' collected by the  

The beam s p l i t t e r  then sends one of the  two beams t o  

the reference detector (thermocouple), and the second one t o  the  detec- 

t o r  which is t o  be calibrated,  
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figure 1. Reimaging Optics and Beax Splitter 



-. 

ModNlM 
I J .  

. __ 

. --l \\ 

' Figure 2. Optical Arrangement of  the Monochromator 



Page 6 

The signal from the reference thermocouple i s  fed, by way of a 

remote preamplifier, in to a narrow bandpass A. C. amplifier and volt- 

meter. This meter locks i t s  center frequency t o  the s ignal  of interest .  

Since the radiation from the beam s p l i t t e r  i s  modulated a t  13 Hx, and 

the lock-in meter i s  tr iggered by the same modulator, a high degree of 

noise rejection i s  achieved by t h i s  voltmeter. After the  signal has 

been r ec t i f i ed  by the voltmeter, the output from the  reference ther- 

mocouple may be read d i rec t ly  on one of the  twenty-fourt full-scale 

ranges of the read-out meter. Simultaneously a D. C, voltage appears 

on a pa i r  of binding posts providing an output of 10 volts f o r  f u l l  

scale meter deflection regardless of the range used. 

Similarly, the  signal from the detector under study is  fed into 

a second, but ident ica l  lock-in voltmeter. 

unknown detector may be read on the  appropriate range of t h i s  meter. 

I n  addition, a corresponding D. C. signal  appears on the  0-10 vol t  

Thus the  output of the  

out le t  . 
The D, C. output from each of the  two lock-in meters is fed into 

This meter has been designed t o  automatically r a t i o  the  a ratiometer. 

outputs o f  the two lock-in voltmeters. This is possible i f  the  refer- 

ence input i s  between 0.1 and 10 vol ts  and the  r a t io  between the  two 

inputs is  between 0 and 1. 

range meter calibrated t o  give the  r a t i o  of two incoming D. C. voltages, 

This r a t i o  may be read d i r ec t ly  on a three- 
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EXPERIMENTAL PROCEDm 

I n  order t o  use t h e  monochromator over t h e  wavelength range 0.3 

micron t o  11.7 Microns, it was necessary t o  make the  following changes 

i n  t h e  optics and the  reference detector: In  t h e  range 0.3 micron t o  

‘1.0 micron a quartz prism was used i n  the monochromator and a reference 

detector with a quartz window was used t o  monitor t h e  beam. I n  t h e  

range 1.0 micron t o  2.0 microns, a quartz prism was used i n  the mono- 

chromtor, while the reference thermocouple with a quartz window was 

replaced by one with a C s I  window, Finally, i n  t h e  range 2.0 microns 

t o  4.7 microns, a rock salt prism was used i n  the monochromator, while 

the bean was monitored by means of a reference thermocouple wi th  a CsI 

I n i t i a l l y  t h e  op t ica l  system was aligned with care i n  order t o  

o b t h  a maximum output s igna l  from the detectors. I n  order t o  obtzin 

radiation i n  a narrow spectral band, t he  wavelength drum of the mono- 

chromator was set so th& a known spec t ra l  band was focussed on the exit 

s l i t  of the monochromator, Similar drum se t t ings  were made every tenth 

of a micron or  less from 0.3 micron t o  4.7 microns, 

The radiation from the  exit s l i t  of the monochromator, f o r  a 

given wavelength set t ing,  was refocussed by the reimaging optics and 

divided i n t o  two beams of equal intensity.  

respectively by t he  reference detector and’by t h e  detector being studied. 

The two beams were received 

The output s igna l  from each detector, corresponding t o  a given 

wavelength, was monitored by means of its lock-in voltmeter tuned t o  

13 Hz, The s ignals  from the two lock-in voltmeters were then rat ioed 
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by the ratiometer. 

range of both meters were recorded. 

sett ing.  

The result ing apparent r a t i o  a s  well  a s  the  scale 

This was repeated a t  each drum 

As a rule  the  spectral  response of the unknown detector is dif-  

ferent  from tha t  of the  reference detector. This means t h a t  it may 

be necessary to  change the meter range of one lock-in voltmeter but 

not of the  other, 

rent  one which must be corrected fo r  any change in meter range, 

the  corrected r a t i o  is equal t o  the product of the  apparent r a t i o  times 

Hence the r a t i o  given by the ratiometer i s  an appa- 

Thus 

the range of meter A divided by the range of meter B, where meter A 

monitors the unknown detector and meter B monitors the  reference de- 

tector .  

The unknown detector used i n  the present study was the  detector in 

the so la r  channel of the Tiros Five-Channel Radiometer #303. Each 

channel i n  the radiometer has i t s  own opt ica l  system and amplifier. 

Thus each "detector has f i l t e r s  and lenses t o  spec t ra l ly  l i m i t  and 

focus the  energy onto the detector flake" (Reference 4). The output 

signal from the solar  channel was taken d i r ec t ly  from the detector. 

Hence the  spectral  response of the  detector which was obtained i n  the 

measurements is the  effect ive response of t he  detector a s  modified by 

the  associated f i l t e r  and optics. 

After obtaining the  corrected r a t io s  of the  so la r  channel output 

t o  tha t  of t he  reference detector, they were normalized by taking the 

m a x i m u m  r a t i o  as unity. These normalized r a t i o s  represent the  re la t ive  



spectral  response of the  solar  channel of radiometer #303 over the 

range 0 .3  micron t o  4.7 microns. 

EXPERIMENTAL RESULTS 

The re la t ive  spectral  response obtained f o r  the solar  channel of 

the Tiros Five-Channel Radiometer #303 i s  presented in tab le  1 and 

plot ted i n  figure 3 .  I n  addition t o  the  experimental r e su l t s  f o r  the 

solar  channel, the  theore t ica l  o r  calculated values of the re la t ive  

spectral  response are  a lso shown i n  tab le  1 and figure 3 .  The l a t t e r  

were obtained by normalizing t o  unity the product %ROT&, where % 
is the spectral  r e f l ec t iv i ty  of the radiometer prism, R, the  spec t ra l  

r e f l ec t iv i ty  of the  chopper, Tf the  spectral  transmittance of the f i l -  

ter-lens system, and Rdthe spectral  response of the thermistor bolo- 

meter of the so la r  channel. The data f o r  these four factors  were sup- 

plied by the Barnes Engineering Company, Stamford, Connecticut (Refer- 

ence 4) * 
- 

It w i l l  be observed tha t  the  experimental values of t he  re la t ive  

spectral  response of the  solar  channel has a m a x i m u m  value of uni ty  

a t  1.5 microns. 

the range 0.9 micron t o  3.3 microns, and drops f a i r l y  rapidly below 

0.9 micron and above 3.3 microns. 

Moreover, t he  re la t ive  response is  90% o r  greater i n  

In  the range 0.9 micron t o  1.6 

microns the experimental values agree reasonably w e l l  with the  the+- 

r e t i c a l  calculations, with a difference of’one percent or  l e s s ,  In 

the  range 1.6 microns t o  3.3 microns the differences are  approximately 

five percent. From 3.3 microns t o  4.7 microns the  experimental values 

decrease more rapidly than do the theore t ica l  values. 



Wavelength 

Microns 

n 

30 
* 32 
* 35 
37 
.LO 

045 
050 
055 
.60 
45 

.'. JO 
75 
80 
85 

* 90 

1.0 
1.1 
1.2 
1.3 
1.4 
105 
1.6 
1 .? 
1.8 
1.9 

Table 1 
RELATIVE; SPECTRAL RESPONSE 

OF TIROS RADXONE~R 303 

Relative Spectral 
Response 

Exper . 
.- 

0 357 
,458 
0552 
0570 . 623 
66L 
,692 
0722 
0720 
b737 

'737 . 804 
0725 
712 . 890 
0927 
.957 
974 
0991 
0983 

1.00 
0991 
0978 
0944 
0922 

1 

Calc . 
0317 

0525 

0574 

,672 

0779 

0740 

. 844 
0939 

.981 

" 

e992 

1.00 

0981 

Wavelength 
A 

Microns 

2.0 
2.1 
2.2 
2.3 
2 04 
2 0 5  

2 e 6  
2 e7 
2.8 
2 09 

3 00 
3 01 
3.2 
3.3 
3.4 

3 4 5  

3.4 
3.7 
3.8 
3.9 

4*0 
401 
4.2 
4.3 
4 04 
4.5 
4.6 

Relative Spectral  
Response 

Gale . 
0968 

0912 

e 870 

,861 

. 861 
. .a59 

e 840 

0824 

.710 

- $546 

.494 

e 298 

0066 

.Oll 
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CONCLUSIONS 

From an examination of  t he  resul ts ,  it would seem tha t  t he  instru- 

mentation used i n  t h i s  study is appropriate f o r  determining the re la t ive  

spec t ra l  response of a detector 

A permanent set-up is being constructed a t  t he  present time. In 

addition, the alignment o f  the optics in the  monochromator is  being 

rechecked with care. 

expectedthat  the experimental r e su l t s  w i l l  show a corresponding i m -  

provement . 
When t h i s  improvement has been completed, it is 
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ADDENDUM 

I n  addition t o  s e t t i ng  up the instrumentation and determining 

the r e l a t ive  spec t ra l  response of the so la r  channel of t h e  Tiros ra- 

diometer #303 reported above under t h e  research grant  NGR 21-023-001, 

the follotJing measurements were made, as well as preliminary procedures 

tr ied,  f o r  the following investigations: 

1. The E3.ectro-Optical Industries 300O0C Blackbody 

a. Measurement o f  the transmittance of the CaF2 window 

b, Checked t h e  temperature cal ibrat ion from 10200C t o  2293OC 

2. The Perkin-Elmer Monochromator, Model 99 

a, Checked the wavelength cal ibrat ion of the quartz prism 

b. Checked the  wavelength calibration of the rock s a l t  prism 

3. Measurement of the t r ensd t t ance  of the new quartz window of thermo- 

4. Checked the  cal ibrat ion of t h e  HRIR with Tom Cherrix 

Se Compared the spec t ra l  dis t r ibut ion of t h e  Santa Barbara Research 

Corpora.t;ion albedo source with that of a standardlOOOW quartz- 

iodine lamp by means of - 
a. The Exrkb-Elmer Monochromator i n  con3unction with an inte- 

gr2Zing sphere (16") and thermocouple and photomultiplier 

detect  o m  

b, As i n  at but using an 8" sphere and a Golay detector 

c b  A water-cooled thermopile and monopass filters. 


